e-Learning Support
Universität Bremen
Vorlesung: 01-29-03-ML-V Machine Learning for Swarm Exploration - Details
Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Vorlesung: 01-29-03-ML-V Machine Learning for Swarm Exploration
Untertitel
Veranstaltungsnummer 01-29-03-ML-V
Semester WiSe 2022/2023
Aktuelle Anzahl der Teilnehmenden 35
Heimat-Einrichtung Elektrotechnik
Veranstaltungstyp Vorlesung in der Kategorie Lehre
Erster Termin Montag, 06.02.2023 09:00 - 17:00, Ort: NW1 N3130
Art/Form
Englischsprachige Veranstaltung Ja
Titel (fremdsprachlich) Machine Learning for Swarm Exploration
ECTS-Punkte 3

Räume und Zeiten

NW1 N3130
Montag, 06.02.2023 - Freitag, 10.02.2023 09:00 - 17:00

Kommentar/Beschreibung

Block-Course

Elective course for M.Sc. CIT, Electrical Engineering & Information Technology and Space-ST.

Contents:
• Why swarm exploration – some motivational examples with applications in space and on Earth
• Preliminaries: selected mathematical formalism (vector spaces, matrices, representation and approximations in vector spaces, least squares, convex optimization)
• Recap of probability and statistics (calculus of probabilities, moments, Bayesian theory)
• Machine learning tools (supervised learning, linear regression, kernel methods, neural networks, impact of regularization, sparsity and compressed sensing)
• Models for multi-agent networks (connected network models, distributed inference strategies)
• Distributed machine learning and exploration (models for static spatial regression, information-theoretic exploration approaches, Bayesian sequential methods for learning and exploration)
• Discussion of several practical examples of swarm exploration solutions (cooperative localization, information-driven sparse mapping of magnetic fields, exploration of sparse gas sources using a swarm of mobile robots)
As outcome, the students should be able to:
• Understand key concepts in distributed information processing over networks,
• Explain and apply mathematical tools needed to implement classical machine learning algorithms in distributed settings

Anmeldemodus

Die Auswahl der Teilnehmenden wird nach der Eintragung manuell vorgenommen.

Nutzer/-innen, die sich für diese Veranstaltung eintragen möchten, erhalten nähere Hinweise und können sich dann noch gegen eine Teilnahme entscheiden.