e-Learning Support
Seminar: 08-26-M14-5 Causal Inference Designs in the Study of Germany's Political System - Details

Seminar: 08-26-M14-5 Causal Inference Designs in the Study of Germany's Political System - Details

Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Seminar: 08-26-M14-5 Causal Inference Designs in the Study of Germany's Political System
Untertitel
Veranstaltungsnummer 08-26-M14-5
Semester WiSe 2025/2026
Aktuelle Anzahl der Teilnehmenden 11
erwartete Teilnehmendenanzahl 30
Heimat-Einrichtung Politik
Veranstaltungstyp Seminar in der Kategorie Lehre
Nächster Termin Montag, 08.12.2025 12:00 - 14:00, Ort: GW2 B2750 (CIP-FB 8)
Art/Form
Englischsprachige Veranstaltung Ja
Veranstaltung für ältere Erwachsene Ja
Anzahl ältere Erwachsene 5
ECTS-Punkte 3 CP oder 6 CP

Modulzuordnungen

Kommentar/Beschreibung

In this course, students will learn the fundamentals of applied causal inference in political science using R. No prior knowledge of statistics or coding is required, as we start from the basics of R programming. The course aims to provide students with the essential quantitative analysis skills that are increasingly important in political science, particularly for their future research and Bachelor theses.

Throughout the course, we will work with real-world datasets, focusing on how to estimate causal relationships from observational (or "happenstance") data. Topics include natural experiments, matching, regression, difference-in-differences, panel methods, instrumental variable estimation and regression discontinuity designs. While we will introduce concepts such as regression and statistical inference, the primary focus is on the practical application of these methods to address important research questions. This course is designed to be applied rather than theoretical, helping students understand how to use data analysis techniques in political science. By the end of the course, students will be equipped with the tools and skills to conduct their own data analysis.

Imai, K., & Bougher, L. D. (2021). Quantitative social science: An introduction in Stata. Princeton University Press.
Llaudet, E., & Imai, K. (2023). Data analysis for social science: A friendly and practical introduction. Princeton University Press.

6CP: In the final session of the course, students will complete an independent data analysis task in class. This will be similar to a take-home exam, but conducted in a supervised in-class setting. Student performance will be assessed based on the quality and accuracy of their work on this task.

Anmeldemodus

Die Auswahl der Teilnehmenden wird nach der Eintragung manuell vorgenommen.

Nutzer/-innen, die sich für diese Veranstaltung eintragen möchten, erhalten nähere Hinweise und können sich dann noch gegen eine Teilnahme entscheiden.